SPSS+AMOS数据分析案例教程-关于中介模
SPSS视频教程内容目录和跳转链接
Meta分析辅导+代找数据
SPSS+AMOS数据分析案例教程-关于中介模
SPSS视频教程内容目录和跳转链接
R语言快速入门视频教程
Python智联招聘数据分析
LCA潜在类别分析和Mplus应用
Amos结构方程模型数据分析入门教程
倒U关系回归分析中介效应和调节效应分析SPSS视频教程
统计咨询(图文问答)

pandas教程:[25]插值法填补缺失值

在B站@mlln-cn, 我就能回答你的问题奥!

文章目录

使用插值法可以计算缺失值的估计值,所谓的插值法就是通过两点(x0,y0),(x1,y1)估计中间点的值,假设y=f(x)是一条直线,通过已知的两点来计算函数f(x),然后只要知道x就能求出y,以此方法来估计缺失值。当然我们也可以假设f(x)不是直线,二是其他函数。

  • 引入相关模块并创建一个数据框
    数据框的内容为:
  • 使用插值法估计缺失值
    输出结果为:
  • 我们可以计算一下缺失值实际上上前一个值和后一个值得平均数,因为interpolate()假设函数是直线形式

  • 假如index是数字,我们还可以根据数字来进行插值,用到参数method=’values’
    比较一下插值的结果与上一个结果的不同之处这时候索引的数值实际上就是用于估计y的x值

  • 同样道理,如果index是时间,我们可以用method=time来达到同样的效果
    输出结果为:

转载请注明来自DataScience.

邮箱: 675495787@qq.com

统计咨询

统计咨询请加入我的星球,有问必回

加入星球向我提问(必回),下载资料,数据,软件等

赞助

持续创造有价值的内容, 我需要你的帮助